
www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 20 – Dictionaries

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Last Class We Covered

• File I/O

– Opening

– Reading

– Writing

– Closing

2

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted3

Any Questions from Last Time?

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted4

File Input and Output
(Review)

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Quick Review

• Write the lines of code for the tasks below

1. Open the file “goodDogs.txt”

2. Read the file in (however you want), and print out
each dog’s name in the sentence “X is a good dog”

3. Finish using the file (what do you need to do?)

5

goodDogs.txt

Thor,Corgi

Coco,Chocolate Lab

Beethoven,St. Bernard

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Today’s Objectives

• Learn about the dictionary data type

• Construct dictionaries and access entries in
those dictionaries

• Use methods to manipulate dictionaries

• Decide whether a list or a dictionary is an
appropriate data structure for a given
application

6

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Organization

• Information in a list is organized how?

–By order

• Information in a dictionary is organized...

–By association

• Python dictionaries associate a set of keys
with corresponding data values

7

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Keys and Values

• A dictionary is a set of “keys” (terms), each
pointing to their own “values” (meanings)

8

course = {"major" : "CMSC", "number" : 201}

Dictionary
name

Key
(string)

Value
(string)

Key
(string)

Value
(int)

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Purpose of Dictionaries

• Why use a dictionary instead of a list?

• Dictionaries are association based

– It’s very easy (and quick!) to find something
if you know the key

• No matter how big the dictionary is, it can
find any entry almost instantaneously

– Lists would require iterating over
the list until the item is found

9

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Dictionary Keys

• Think of a dictionary as an unordered
set of key:value pairs

• Dictionary keys must be unique

– A key in a dictionary is like an index in a list

– Python must know exactly which value you want

• Keys can be of any data type

– As long as it is immutable

10

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Dictionary Values

• Dictionary keys have many rules, but the
values do not have many restrictions

• They do not have to be unique

– Why?

• They can be mutable or immutable

– Why?

11

We can have duplicate values in a
list, but indexes must be unique

Since they don’t need to be unique, we
can change them without restriction

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Dictionary Usage Example

• What if we have a list of every student at UMBC,
with all the info represented as a list?

– The first element of the info list is the UMBC ID #

• How long would it take to find a specific student?

– If the list is unsorted, a very long time!

– If it’s sorted, resort every time a student is added

• Finding a student by ID # in a dictionary,
on the other hand, is very very quick

12

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Hashing

• Why are dictionaries so fast?

– Hashing!

• Hashing is a way of translating arbitrary
data (like strings or large numbers) into
a smaller set space for ease of use

13

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Hashing

• Hashing takes in anything (a string, an int, a
float, etc.) and generate a number based on it

– Same result for same input

– Use a number to tell where to store in memory

• Given the same input, you get the same
number, and can find it again very quickly

14

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Hash Functions

• A function that, given a value, returns a value
that tells us where it is stored in memory

– If it’s in that location, it’s in the dictionary

– If it’s not in that location, it’s not in the dictionary

• The hashing function has no other purpose

– If we look at the function’s inputs and outputs,
they probably won’t “make sense”

– This function is called a hash function because it
“makes hash” of its inputs

15

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Hash Usage Example

• The AB12345 UMBC student ID number

– Gives 67,600,000 possible combinations

– Making a list of that size wastes a lot of space

• Wouldn’t use even 1% of the list

– Making a dictionary allows us to better store the
thousands of students without requiring a massive
waste of space

16

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted17

Creating Dictionaries

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Creating Dictionaries (Curly Braces)

• The empty dictionary is written as two curly
braces containing nothing

dict1 = {}

• To create a dictionary, use curly braces and a
colon (:) to separate keys from their value

dict2 = {"name" : "Maya", "age" : 7}

18

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Creating Dictionaries (From a List)

• To cast a list as a dictionary, you use dict()

myPantry = [['candy', 5],

['cookies', 16],

['ice cream', 2]]

cast to a dictionary

myDict = dict(myPantry)

19

Must be
key, value pairs

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted20

Dictionary Operations

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Dictionary Operations

• Dictionaries are probably most similar to a list

• You can do a number of operations:

– Access a key’s value

– Update a key’s value

– Add new key:value pairs

– Delete key:value pairs

21

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Accessing Values

• To access dictionary elements, you use the
square brackets and the key to obtain its value

dogBreeds = {"A" : "Akita", "B" : "Basenji",

"C" : "Chesapeake Bay Retriever"}

print("dogBreeds at C:", dogBreeds["C"])

print("dogBreeds at B:", dogBreeds["B"])

Output:

dogBreeds at C: Chesapeake Bay Retriever

dogBreeds at B: Basenji

22

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Updating Values

• To update dictionary elements, you use the
square brackets and the key to indicate which
value you would like to update

dogBreeds["B"] = "Beagle"

print(dogBreeds)

Output:

{'C': 'Chesapeake Bay Retriever',

'B': 'Beagle', 'A': 'Akita'}

23

Why are these
out of order? Dictionaries

organize by
association, not

by order

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Adding New Key:Value Pairs

• To add new values, we don’t need to use
append() – we simply state the key and
value we want to use, with square brackets

dogBreeds["D"] = "Dunker"

dogBreeds["E"] = "Eurasier"

print(dogBreeds)

Output:

{'C': 'Chesapeake Bay Retriever', 'B': 'Beagle',

'A': 'Akita', 'E': 'Eurasier', 'D': 'Dunker'}

24

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Deleting Key:Value Pairs

• Key:value pairs must be deleted together;
you can’t have a key with no value

• To delete a key:value, use the del keyword
and specify the key you want to delete

del dogBreeds["D"]

print(dogBreeds)

Output:

{'C': 'Chesapeake Bay Retriever', 'B': 'Beagle',

'A': 'Akita', 'E': 'Eurasier'}

25

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Time for…

26

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Creating Dictionaries (From Two Lists)

• Here we have two lists
– Of the same length

– Contents of each index match up

• (Pratik is Social Work, Amber is Pre-Med, etc.)

names = ["Pratik", "Amber", "Sam"]

major = ["Social Work", "Pre-Med", "Art"]

• Write the code to create a dictionary from these

27

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted28

Dictionary Methods

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Methods

• Methods are functions that are specific to a
data type (like append() or lower(), etc.)

• theDictionary.get(theKey)
– For a key theKey, returns the associated value

– If theKey doesn’t exist, returns None

– Optionally use a second parameter to return
something other than None if not found

• theDictionary.get(theKey, -1)

29

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Methods

• theDictionary.values()
– Returns a “view” of the theDictionary’s values

– Need to cast to a list

• theDictionary.keys()
– Returns a “view” of the theDictionary’s keys

– Need to cast to a list

• The two lists returned are in the same order

– (Value at index 0 matches key at index 0, etc.)

30

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

When to Use Dictionaries

• Dictionaries are very useful if you have...

– Data whose order doesn’t matter

– A set of unique keys

• Key is a word, value is the definition (or translation)

• Key is a postal abbreviation, value is the full state name

• Key is a name, value is a list of their game scores

– A need to find things easily and quickly

– A need to easily add and remove elements

31

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

• Charles Babbage

– Invented the Analytical Engine

• Was never built, but would have
used punched cards to control a
mechanical calculator

– Work fell into obscurity, and
computer builders in the 30s
and 40s re-invented many of
his architectural innovations

– Also invented the cow catcher for trains

32

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

• Ada Lovelace

– Wrote the first ever computer algorithm

– Realized the potential of the
Analytical Engine

• If numbers could be used to
represent other things (like music
notes), the “engine might compose
elaborate and scientific pieces of
music of any degree of complexity
or extent”

33

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Announcements

• Project 3 will be out soon

– As well the next survey

– Due dates will be adjusted accordingly

34

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Image Sources
• Charles Babbage (adapted from):

– https://commons.wikimedia.org/wiki/File:Charles_Babbage_1860.jpg

• Ada Lovelace (adapted from):
– https://commons.wikimedia.org/wiki/File:Ada_Lovelace.jpg

35

